David E. Cummings, Ph.D.

Professor of Biology

Dr. David Cummings is a microbiologist with experience in microbial ecology, microbial physiology, and microbial genomics. In addition to microbiology courses, he teaches Introductory Cell Biology and Biochemistry as well as Neotropical Ecology, which wraps up with a two-week excursion to the rain and cloud forests of Costa Rica. His research is focused on the ways bacteria can share genetic information, especially information that makes them less susceptible to antibiotics and better suited to cause disease.

Education

  • Ph.D., Microbiology, University of Idaho
  • B.A., English Literature, Point Loma Nazarene College (PLNU)

Courses Taught

  • Microbiology of Infectious Diseases – BIO 220
  • Microbiology – BIO 315
  • Cell Biology and Biochemistry – BIO 210
  • Neotropical Ecology – BIO 340

Experience in Field

  • The Idaho National Laboratory (Idaho Falls, Idaho), 2000 – 2004
  • Point Loma Nazarene University (San Diego, Calif.), 2004 – present

Professional and Community Involvement

  • Mentoring PLNU student researchers, 2004 – present
  • External manuscript reviewer for numerous scientific journals, 2004 – present
  • External grant proposal reviewer for the National Science Foundation, periodically, 2004 – present
  • Member of the American Society for Microbiology, 1997 – present

Dissertations, Presentations, and Publications

  • Borgogna, T. R., J.-L. Borgogna, J. A. Mielke, C. J. Brown, E. M. Top, R. T. Botts, and D. E. Cummings (2016). High Diversity of CTX-M Extended-Spectrum β-lactamases in Municipal Wastewater Urban Wetlands. Microb. Drug Resist. 22:312-320.
  • Cummings, D. E., K. F. Archer, D. J. Arriola, P. A. Baker, K. G. Faucett, J. B. Laroya, K. L. Pfeil, C. R. Ryan, K. R. U. Ryan, and D. E. Zuill (2011). Broad Dissemination of Plasmid-Mediated Quinolone Resistance Genes in Sediments of Two Urban Coastal Wetlands. Environmental Science & Technology. 45:447-454.
  • Magnuson, T. S., M. W. Swenson, A. J. Paszczynski, L. A. Deobald, D. Kerk, and D. E. Cummings (2010). Proteogenomic and Functional Analysis of Chromate Reduction in Acidiphilium Cryptum JF-5, an Fe(III)-Respiring Acidophile. BioMetals. 23:1129-1138.
  • Cummings, D. E., A. E. Zimmerman, K. R. Unruh, and S. Spring (2010). Influence of Microbially Reducible Fe(III) on the Bacterial Community Structure of Estuarine Surface Sediments. Geomicrobiology. J. 27:292-302.
  • Boyd, E. S., D. E. Cummings, and G. G. Geesey (2007). Mineralogy Influences Structure and Composition of Bacterial Communities Associated with Geological Substrata in a Pristine Aquifer. Microbial Ecology. 54:170-182.
  • Cummings, D. E., S. Fendorf, N. Singh, R. K. Sani, B. M. Peyton, and T. S. Magnuson (2007). Reduction of Cr(VI) Under Acidic Conditions by the Facultative Fe(III)-Reducing Bacterium Acidiphilium Cryptum. Environmental Science & Technology. 41:146-152.
  • Cummings, D. E., and T. S. Magnuson (2007). Microbial Fe(III) Reduction: Ecological and Physiological Considerations. In Hurst, C. J., R. L. Crawford, G. R. Knudsen, M. J. McInerney, and L. D. Stetzenbach (eds.), Manual of Environmental Microbiology, 3rd edition. ASM Press, Washington, D.C.
  • Macbeth, T. W., D. E. Cummings, S. Spring, L. M. Petzke, and K. S. Sorenson, Jr. (2004). Molecular Characterization of a Dechlorinating Community Resulting from in Situ Biostimulation in a Trichloroethene-Contaminated Deep, Fractured Basalt Aquifer and Comparison to a Derivative Laboratory Culture. Applied and Environmental Microbiology. 70:7329-7341.
  • Reardon, C. L., D. E. Cummings, L. M. Petzke, B. L. Kinsall, D. B. Watson, B. M. Peyton, and G. G. Geesey (2004). Composition and Diversity of Microbial Communities Recovered from Surrogate Minerals Incubated in an Acidic Uranium-Contaminated Aquifer. Applied and Environmental Microbiology. 70:6037-6046.
  • Cummings, D. E., O. L. Snoeyenbos-West, D. T. Newby, A. M. Niggemyer, D. R. Lovley, L. A. Achenbach, and R. F. Rosenzweig (2003). Diversity of Geobacteraceae Species Inhabiting Metal-Polluted Freshwater Lake Sediments Ascertained by 16S rDNA Analyses. Microbial Ecology. 46:257-269.
  • O'Connell, S. P., R. M. Lehman, O. Snoeyenbos-West , V. D. Winston , D. E. Cummings, M. E. Watwood, and F. S. Colwell (2003). Detection of Euryarchaeota and Crenarchaeota in an Oxic Basalt Aquifer. FEMS Microbial Ecology. 44:165-173.

See More Dissertations, Presentations, and Publications

  • Cummings, D. E., S. Spring, and R. F. Rosenzweig (2002). The Ecology of Iron-Reducing Bacteria in Contaminated and Pristine Environments. In Hurst, C. J., R. L. Crawford, G. R. Knudsen, M. J. McInerney, and L. D. Stetzenbach (eds.), Manual of Environmental Microbiology, 2nd edition. ASM Press, Washington, D.C.
  • Cummings, D. E., A. W. March, B. Bostick, S. Spring, F. Caccavo, Jr., S. Fendorf, and R. F. Rosenzweig (2000). Evidence for Microbial Fe(III) Reduction in Anoxic, Mining-Impacted Lake Sediments (Lake Coeur d’Alene, Idaho). Applied and Environmental Microbiology. 66: 154-162.
  • Cummings, D. E., F. Caccavo, Jr., S. Spring, and R. F. Rosenzweig (1999). Ferribacterium Limneticum, Gen. Nov., Sp. Nov. an Fe(III)-Reducing Microorganism Isolated from Mining-Impacted Freshwater Lake Sediments. Arch. Microbiol. 171: 183-188.
  • Cummings, D. E., F. Caccavo, Jr., S. Fendorf, and R. F. Rosenzweig (1999). Arsenic Mobilization by the Dissimilatory Fe(III)-Reducing Bacterium Shewanella alga BrY. Environmental Science & Technology. 33: 723-729.